1.插入排序
基本思想
在要排序的一组数中,假设前面(n-1)[n>=2] 个数已经是排好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数也是排好顺序的。如此反复循环,直到全部排好顺序。
算法描述:
一般来说,插入排序都采用in-place(即只需用到O(1)的额外空间的排序)在数组上实现。具体算法描述如下:
- 从第一个元素开始,该元素可以认为已经被排序
- 取出下一个元素,在已经排序的元素序列中从后向前扫描
- 如果该元素(已排序)大于新元素,将该元素移到下一位置
- 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置
- 将新元素插入到该位置后
- 重复步骤2~5
Java实现
1 | //将arr[i] 插入到arr[0]...arr[i - 1]中 |
Python实现
1 | def insertion_sort(lst): |
复杂度分析
如果目标是把n个元素的序列升序排列,那么采用插入排序存在最好情况和最坏情况。最好情况就是,序列已经是升序排列了,在这种情况下,需要进行的比较操作需n-1次即可。最坏情况就是,序列是降序排列,那么此时需要进行的比较共有(1/2)n(n-1)次。插入排序的赋值操作是比较操作的次数减去n-1次,(因为n-1次循环中,每一次循环的比较都比赋值多一个,多在最后那一次比较并不带来赋值)。平均来说插入排序算法复杂度为O(n^2)。因而,插入排序不适合对于数据量比较大的排序应用。但是,如果需要排序的数据量很小,例如,量级小于千;或者若已知輸入元素大致上按照順序排列,那么插入排序还是一个不错的选择。 插入排序在工业级库中也有着广泛的应用,在STL的sort算法和stdlib的qsort算法中,都将插入排序作为快速排序的补充,用于少量元素的排序(通常为8个或以下)。
2.希尔排序
基本思想
希尔排序,也称递减增量排序算法,是插入排序的一种更高效的改进版本。希尔排序是非稳定排序算法。
希尔排序是基于插入排序的以下两点性质而提出改进方法的:
- 插入排序在对几乎已经排好序的数据操作时,效率高,即可以达到线性排序的效率
- 但插入排序一般来说是低效的,因为插入排序每次只能将数据移动一位
算法描述:
- 先取一个正整数 d1(d1 < n),把全部记录分成 d1 个组,所有距离为 d1 的倍数的记录看成一组,然后在各组内进行插入排序
- 然后取 d2(d2 < d1)
- 重复上述分组和排序操作;直到取 di = 1(i >= 1) 位置,即所有记录成为一个组,最后对这个组进行插入排序。
Java实现
1 | public static void shellSort(int[] arr) { |
Python实现
1 | def shell_sort(list): |
复杂度分析
希尔排序是优化的插入排序,比O(n^2)低。
3.选择排序
基本思想
在要排序的一组数中,选出最小的一个数与第一个位置的数交换;然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一个数比较为止。
Java实现
1 | public static void selectionSort(int[] arr) { |
Python实现
1 | def selection_sort(L): |
复杂度分析
选择排序的交换操作介于0和n-1次之间。选择排序的比较操作为n(n-1)/2次。选择排序的赋值操作介于0和3(n-1)次之间。
比较次数O(n^2),比较次数与关键字的初始状态无关,总的比较次数N=(n-1)+(n-2)+…+1=n(n-1)/2。交换次数O(n),最好情况是,已经有序,交换0次;最坏情况是,逆序,交换n-1次。交换次数比冒泡排序较少,由于交换所需CPU时间比比较所需的CPU时间多,n值较小时,选择排序比冒泡排序快。
原地操作几乎是选择排序的唯一优点,当空间复杂度要求较高时,可以考虑选择排序;实际适用的场合非常罕见。
4.堆排序
基本思想
堆排序是一种树形选择排序,是对直接选择排序的有效改进。
堆的定义如下:具有n个元素的序列(h1,h2,…,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1)(i=1,2,…,n/2)时称之为堆。在这里只讨论满足前者条件的堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项(大顶堆)。完全二叉树可以很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储序,使之成为一个堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点的堆,并对它们作交换,最后得到有n个节点的有序序列。从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。
Java实现
1 | public void heapSort(){ |
Python实现
1 | def heap_sort(lst): |
复杂度分析
堆排序的平均时间复杂度为O(nlogn),空间复杂度为O(1)。
5.冒泡排序
基本思想
在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒。即:每当两相邻的数比较后发现它们的排序与排序要求相反时,就将它们互换。
Java实现
1 | public static void bubbleSort(int[] arr) { |
Python实现
1 | def bubble_sorted(iterable): |
复杂度分析
冒泡排序总的平均时间复杂度为O(n^2)。
6.快速排序
基本思想
选择一个基准元素,通常选择第一个元素或者最后一个元素,通过一趟扫描,将待排序列分成两部分,一部分比基准元素小,一部分大于等于基准元素,此时基准元素在其排好序后的正确位置,然后再用同样的方法递归地排序划分的两部分。
算法描述:
- 从数列中挑出一个元素,称为”基准”(pivot),
- 重新排序数列,所有比基准值小的元素摆放在基准前面,所有比基准值大的元素摆在基准后面(相同的数可以到任何一边)。在这个分割结束之后,该基准就处于数列的中间位置。这个称为分割(partition)操作。
- 递归地(recursively)把小于基准值元素的子数列和大于基准值元素的子数列排序。
Java实现
1 | public static void quickSort(int[] arr, int head, int tail) { |
Python实现
1 | def quicksort(lst, lo, hi): |
复杂度分析
快速排序的时间复杂度为O(nlogn)。
7.归并排序
基本思想
归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。
Java实现
递归版:
1 | static void mergeSortRecursive(int[] arr, int[] result, int start, int end) { |
迭代版:
1 | public static void mergeSort(int[] arr) { |
Python实现
1 | from collections import deque |
复杂度分析
归并排序的时间复杂度为O(nlogn)。
8.基数排序
基本思想
将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后,数列就变成一个有序序列。
Java实现
1 | public static void radixSort(int[] number, int d) {//d表示最大的数有多少位 |
Python实现
1 | import math |
复杂度分析
基数排序的时间复杂度是O(kn),其中n是排序元素个数,k是数字位数。注意这不是说这个时间复杂度一定优于O(nlogn),k的大小取决于数字位的选择(比如比特位数),和待排序数据所属数据类型的全集的大小;k决定了进行多少轮处理,而n是每轮处理的操作数目。